Copied to
clipboard

G = C23.48D28order 448 = 26·7

19th non-split extension by C23 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.48D28, (C2×C8)⋊21D14, (C2×D28)⋊14C4, (C2×C56)⋊36C22, D28.24(C2×C4), (C2×C4).153D28, (C2×C28).173D4, C28.417(C2×D4), C2.D5639C2, C4.13(D14⋊C4), C2.4(C8⋊D14), (C2×M4(2))⋊11D7, C4⋊Dic748C22, C22.57(C2×D28), C28.27(C22⋊C4), C14.20(C8⋊C22), (C14×M4(2))⋊19C2, (C2×C28).773C23, C28.115(C22×C4), (C22×D28).15C2, (C22×C4).139D14, (C22×C14).101D4, C73(C23.37D4), C22.28(D14⋊C4), (C2×D28).200C22, C23.21D1416C2, (C22×C28).188C22, C4.73(C2×C4×D7), (C2×C4).53(C4×D7), C2.30(C2×D14⋊C4), C4.110(C2×C7⋊D4), (C2×C28).108(C2×C4), (C2×C14).163(C2×D4), (C2×C4).76(C7⋊D4), C14.58(C2×C22⋊C4), (C2×C4).722(C22×D7), (C2×C14).21(C22⋊C4), SmallGroup(448,665)

Series: Derived Chief Lower central Upper central

C1C28 — C23.48D28
C1C7C14C28C2×C28C2×D28C22×D28 — C23.48D28
C7C14C28 — C23.48D28
C1C22C22×C4C2×M4(2)

Generators and relations for C23.48D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd27 >

Subgroups: 1316 in 190 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C56, D28, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×C14, C23.37D4, C4×Dic7, C4⋊Dic7, C23.D7, C2×C56, C7×M4(2), C2×D28, C2×D28, C22×C28, C23×D7, C2.D56, C23.21D14, C14×M4(2), C22×D28, C23.48D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C8⋊C22, C4×D7, D28, C7⋊D4, C22×D7, C23.37D4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C8⋊D14, C2×D14⋊C4, C23.48D28

Smallest permutation representation of C23.48D28
On 112 points
Generators in S112
(2 30)(4 32)(6 34)(8 36)(10 38)(12 40)(14 42)(16 44)(18 46)(20 48)(22 50)(24 52)(26 54)(28 56)(58 86)(60 88)(62 90)(64 92)(66 94)(68 96)(70 98)(72 100)(74 102)(76 104)(78 106)(80 108)(82 110)(84 112)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 111)(26 112)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 58 59 56)(2 55 60 57)(3 112 61 54)(4 53 62 111)(5 110 63 52)(6 51 64 109)(7 108 65 50)(8 49 66 107)(9 106 67 48)(10 47 68 105)(11 104 69 46)(12 45 70 103)(13 102 71 44)(14 43 72 101)(15 100 73 42)(16 41 74 99)(17 98 75 40)(18 39 76 97)(19 96 77 38)(20 37 78 95)(21 94 79 36)(22 35 80 93)(23 92 81 34)(24 33 82 91)(25 90 83 32)(26 31 84 89)(27 88 85 30)(28 29 86 87)

G:=sub<Sym(112)| (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,58,59,56)(2,55,60,57)(3,112,61,54)(4,53,62,111)(5,110,63,52)(6,51,64,109)(7,108,65,50)(8,49,66,107)(9,106,67,48)(10,47,68,105)(11,104,69,46)(12,45,70,103)(13,102,71,44)(14,43,72,101)(15,100,73,42)(16,41,74,99)(17,98,75,40)(18,39,76,97)(19,96,77,38)(20,37,78,95)(21,94,79,36)(22,35,80,93)(23,92,81,34)(24,33,82,91)(25,90,83,32)(26,31,84,89)(27,88,85,30)(28,29,86,87)>;

G:=Group( (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,58,59,56)(2,55,60,57)(3,112,61,54)(4,53,62,111)(5,110,63,52)(6,51,64,109)(7,108,65,50)(8,49,66,107)(9,106,67,48)(10,47,68,105)(11,104,69,46)(12,45,70,103)(13,102,71,44)(14,43,72,101)(15,100,73,42)(16,41,74,99)(17,98,75,40)(18,39,76,97)(19,96,77,38)(20,37,78,95)(21,94,79,36)(22,35,80,93)(23,92,81,34)(24,33,82,91)(25,90,83,32)(26,31,84,89)(27,88,85,30)(28,29,86,87) );

G=PermutationGroup([[(2,30),(4,32),(6,34),(8,36),(10,38),(12,40),(14,42),(16,44),(18,46),(20,48),(22,50),(24,52),(26,54),(28,56),(58,86),(60,88),(62,90),(64,92),(66,94),(68,96),(70,98),(72,100),(74,102),(76,104),(78,106),(80,108),(82,110),(84,112)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,111),(26,112),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,58,59,56),(2,55,60,57),(3,112,61,54),(4,53,62,111),(5,110,63,52),(6,51,64,109),(7,108,65,50),(8,49,66,107),(9,106,67,48),(10,47,68,105),(11,104,69,46),(12,45,70,103),(13,102,71,44),(14,43,72,101),(15,100,73,42),(16,41,74,99),(17,98,75,40),(18,39,76,97),(19,96,77,38),(20,37,78,95),(21,94,79,36),(22,35,80,93),(23,92,81,34),(24,33,82,91),(25,90,83,32),(26,31,84,89),(27,88,85,30),(28,29,86,87)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222222244444444777888814···1414···1428···2828···2856···56
size1111222828282822222828282822244442···24···42···24···44···4

82 irreducible representations

dim11111122222222244
type++++++++++++++
imageC1C2C2C2C2C4D4D4D7D14D14C4×D7D28C7⋊D4D28C8⋊C22C8⋊D14
kernelC23.48D28C2.D56C23.21D14C14×M4(2)C22×D28C2×D28C2×C28C22×C14C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C23C14C2
# reps14111831363126126212

Matrix representation of C23.48D28 in GL8(𝔽113)

1120000000
0112000000
0011200000
0001120000
00001000
00000100
00007201120
00007200112
,
10000000
01000000
0011200000
0001120000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
0000112000
0000011200
0000001120
0000000112
,
1377000000
3294000000
0010880000
00131030000
000010910
0000001121
0000011120
00007201120
,
6723000000
8046000000
00103250000
005100000
000010910
0000720112112
00007201120
0000011120

G:=sub<GL(8,GF(113))| [112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[13,32,0,0,0,0,0,0,77,94,0,0,0,0,0,0,0,0,10,13,0,0,0,0,0,0,88,103,0,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,91,112,112,112,0,0,0,0,0,1,0,0],[67,80,0,0,0,0,0,0,23,46,0,0,0,0,0,0,0,0,103,5,0,0,0,0,0,0,25,10,0,0,0,0,0,0,0,0,1,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,91,112,112,112,0,0,0,0,0,112,0,0] >;

C23.48D28 in GAP, Magma, Sage, TeX

C_2^3._{48}D_{28}
% in TeX

G:=Group("C2^3.48D28");
// GroupNames label

G:=SmallGroup(448,665);
// by ID

G=gap.SmallGroup(448,665);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,387,142,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^27>;
// generators/relations

׿
×
𝔽